Air Flow formulas

CFM = Duct area sq ft x Velocity (Mercury)

Standard Air= 70F @ 29.92" HG

1 cubic foot of standard air = 0.075 pounds 13.3 cubic feet of standard air = 1 pound

FAN LAWS:

Remember RPM is interchangeable for CFM

Note: new is the same as 1 and old is the same as 2

$$\left(\frac{CFM_{new}}{CFM_{old}}\right) = \left(\frac{RPM_{new}}{RPM_{old}}\right)$$

CFM new = CFM old X
$$\left(\frac{RPM_{new}}{RPM_{old}}\right)$$
 RPM new = RPM old X $\left(\frac{CFM_{new}}{CFM_{old}}\right)$

RPM new = RPM old
$$\times \left(\frac{CFM_{new}}{CFM_{old}}\right)$$

$$\left(\frac{CFM_{new}}{CFM_{old}}\right)^2 = \frac{SP_{new}}{SP_{old}} \text{ Or } \left(\frac{CFM_{new}}{CFM_{old}}\right) = \sqrt{\frac{SP_{new}}{SP_{old}}}$$

Formulas for problem solving

CFM new = CFM old X
$$\sqrt{\frac{SP_{new}}{SP_{old}}}$$
 SP new = $\left(\frac{CFM_{new}}{CFM_{old}}\right)^2$

Fan Law #3
$$\left(\frac{CFM_{new}}{CFM_{old}}\right)^{3} = \frac{BHP_{new}}{BHP_{old}} \text{ or } \frac{CFM_{new}}{CFM_{old}} = \sqrt[3]{\frac{BHP_{new}}{BHP_{old}}}$$

Formulas for problem solving

CFM new = CFM old X
$$\sqrt[3]{\frac{BHP_{new}}{BHP_{old}}}$$
 BHP new = BHP old x $\left(\frac{CFM_{new}}{CFM_{old}}\right)^3$

Volume calculations:

Calculating Outside Air quantities:

$$\mathbf{OAT} = \frac{\left(MATx100\right) - \left(\% RAxRAT\right)}{\% OA} \quad \mathbf{O} = \mathbf{Outside} \quad \mathbf{A} = \mathbf{Air} \quad \mathbf{R} = \mathbf{Return} \quad \mathbf{M} = \mathbf{Mixed}$$

T=Temperature

$$\%\mathbf{OA} = \frac{(RAT - MAT)}{(RAT - OAT)} \times 100$$

$$\mathbf{MAT} = \frac{\left(\% OAxOAT\right) + \left(\% RAxRAT\right)}{100}$$

$$\mathbf{RAT} = \frac{(MATx100) - (\%OAxOAT)}{\%RA}$$

Velocity and Velocity with density correction:

For Standard Air (70F @ 29.92"):

For Other Than Standard Air:

$$V = 4005 \times \sqrt{VP}$$

$$V = \left(\frac{V}{4005}\right)^{2}$$

$$V = 1096.7 \times \sqrt{\frac{VP}{Den}}$$

$$Den = 0.075 \times \frac{530}{460 + T} \times \frac{BAR}{29.92}$$

Airflow stations flow:

$$CFM = C_V \times \sqrt{\Delta P(inches)H2o}$$

$$Cv = \sqrt[3]{\frac{CFM}{\Delta P(inches)H2o}}$$

$$\Delta P(inche)H2o = \left(\frac{CFM}{Cv}\right)^2$$

Air Thermal calculations:

 $BTUH = M \times sp.ht. \times \Delta T$

 $M = Mass\ Flow\ Rate\ in\ Lbs.\ per\ Hour.$ sp.ht. = Specific Heat in BTU/Lb. per Degree F.

$$CFM = \frac{BTUH(Sensible)}{1.08 \times \Delta T(DryBulb)}$$

$$BTUH = CFM \times 1.08 \times \Delta T \times \frac{Den}{0.075}$$

$$\Delta T = \frac{BTUH}{1.08 \times CFM}$$

$$BTUH(Total) = CFM \times \Delta h \times 4.5 \times \frac{Den}{0.075}$$
 h = Enthalpy in BTU per Lb.
$$\frac{BTUH}{1000} = MBH$$

Fan calculations:

Static fan efficiency:
$$FanBHP = \frac{CFM \times SP}{6356 \times SE}$$

$$FanTipSpeedFPM = RPM \times \frac{Circ.(in.)}{12}$$

$$RPM = \frac{Ts(FPM) \times 12}{Circ.(in.)}$$

$$Circ.(in.) = \frac{Ts(FPM) \times 12}{RPM}$$

$$BL = 2C + \left(1.57 \times (D+d)\right) + \frac{(D-d)^2}{4C}$$

$$FanRPM = MotorRPM \times \frac{d}{D}$$

$$MotorRPM = FanRPM \times \frac{D}{d}$$

BL = Belt Length (in.) C = Distance between shaft centers (in.) D = Fan sheave dia. (in.) d = Motor Sheave dia. (in.)

Max. (min.) Fan sheave Dia. =
$$\frac{ExsistingFanSheaveDia.}{3\sqrt{\frac{Max.BHP}{ExsistingEstimatedBHP}}}$$

Max. Motor sheave = Existing Motor sheave Dia. X
$$3\sqrt{\frac{Max.BHP}{ExsistingEstimatedBHP}}$$

New **Motor** Sheave size **Diameter new** = Dia.old x
$$\left(\frac{RPM_{new}}{RPM_{old}}\right)$$

New **Fan** Sheave size **Diameter new** = Dia.old x $\left(\frac{RPM_{old}}{RPM_{new}}\right)$